The climate of the area is semi-arid warm-Mediterranean, with

The climate of the area is semi-arid warm-Mediterranean, with

a mean annual precipitation of 220 mm (with 37 % of inter-annual variation and 76 to 215 % of monthly variation). The number of days with rain each year varies from 25 to 55 (average 37). Mean annual temperature is 18.5 °C, with a monthly mean of AZD1390 ic50 4.1 °C in the coldest month and 34.7 °C in the hottest month. Potential evapotranspiration is around 5–7 times higher than annual precipitation. The average annual insolation is more than 3,000 h/year. About one-third of the total badland surface consists of eroded soil which is almost bare; another third is covered by a mosaic of grasses, shrubs, annual plants and BSCs, often dominated by lichens. The remaining third is mainly covered by BSC, with some sparse vascular plants. Shrubs include several endemics and a high proportion of Iberian-North African species. BSCs include cyanobacteria, occasional mosses and numerous lichens (Catapyrenium rufescens, Cladonia convoluta, Collema cristatum, Diplochistes diacapsis, Endocarpon pusillum, Fulgensia fulgida, selleck compound F. poeltii, F. desertorum, Placynthium nigrum, Psora albilabra, P. decipiens, Squamarina cartilaginea, T. sedifolia, etc.) (Gutiérrez and Casares 1994). Land use has probably been minimal during the last 60 years and certainly it has been very

light during the last 23 years. The area has been protected since 1989 as “Paraje Natural”.   Methods Climate All investigation

sites are equipped with similar climate stations, monitoring wind speed and direction, air temperature, air humidity, solar radiation (Photosynthetically Active Photon Flux Density, PPFD), UV-radiation, and precipitation every 5 min (supplementary material Fig. 2a). All stations run for at least one year, but preferably 2–2.5 years. Where RANTES necessary, the climate stations are fenced as security against damage. Vegetation analyses Sampling for the vegetation analyses, biodiversity and soil property assessment was conducted in one concerted approach: First, at each of the four geographical sites, homogeneous vegetation units 100 × 100 m were defined and STI571 coverage of the different elements was determined by 150 subplots 25 × 25 cm applying the point-intercept method. We differentiated between BSCs light and BSCs dark, the latter represent successional development of BSC from a species-poor, light-coloured cyanobacterial BSC to a species-rich BSC community dominated by dark cyanobacteria (Belnap and Eldridge 2003), cyanolichen-dominated, chlorolichen-dominated, bryophyte-dominated, vascular plants, litter, open soil, stones and gravel. Second, 10 restoration plots were established at each of the four geographical sites in relatively well-developed vegetation units to investigate the speed and successional pattern of BSC recovery. Each restoration plot (100 × 100 cm) is accompanied by a control plot (100 × 100 cm; supplementary material Fig. 2b).

Leave a Reply

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>