Insulin-like growth factor I (IGF-I) has been shown to increase m

Insulin-like growth factor I (IGF-I) has been shown to increase muscle mass and promote muscle cell proliferation, differentiation, and survival. We, therefore, hypothesized that IGF-I might also be cytoprotective for muscle cells during oxidative stress. Exogenous hydrogen peroxide (H(2)O(2)) was CAL-101 used to induce oxidative stress/damage in two types of skeletal muscle cells. Apoptotic pathways were assessed after the oxidative damage and the effects of IGF-I on oxidative stress in muscle

cells were examined. Different IGF-I sub-pathways were analyzed with measurement of the expression of pro- and antiapoptotic proteins. It was found that H(2)O(2) diminishes muscle cell viability and induces a caspase-independent apoptotic cell death. Pretreatment with IGF-I protects muscle cells from H(2)O(2)-induced cell death and enhances muscle cells survival. This effect appears to result from the promotion of the anti-apoptotic protein, Bcl2. Further investigation shows that protection is via an IGF-I sub-pathway: PI3K/Akt and ERK1/2 MAPK pathways. Protecting muscle cells from oxidative damage presents a potential application in the treatment of the muscle wasting, which appears in many muscle pathologies including Duchenne muscle dystrophy and sarcopenia.”
“Bone Selleckchem BMS-777607 mass is determined by bone cell

differentiation, activity, and death, which Oxalosuccinic acid mainly occur through apoptosis. Apoptosis can be triggered by death receptor Fas (CD95), expressed on osteoblasts and osteoclasts and may be regulated by estrogen. We have previously shown that signaling through Fas inhibits osteoblast differentiation. In this study we analyzed Fas as a possible mediator of bone loss induced by estrogen withdrawal. At 4 weeks after ovariectomy (OVX), Fas gene expression was greater in osteoblasts and lower in osteoclasts in ovariectomized

C57BL/6J (wild type (wt)) mice compared with sham-operated animals. OVX was unable to induce bone loss in mice with a gene knockout for Fas (Fas -/- mice). The number of osteoclasts increased in wt mice after OVX, whereas it remained unchanged in Fas -/- mice. OVX induced greater stimulation of osteoblastogenesis in Fas -/- than in wt mice, with higher expression of osteoblast-specific genes. Direct effects on bone cell differentiation and apoptosis in vivo were confirmed in vitro, in which addition of estradiol decreased Fas expression and partially abrogated the apoptotic and differentiation-inhibitory effect of Fas in osteoblast lineage cells, while having no effect on Fas-induced apoptosis in osteoclast lineage cells. In conclusion, the Fas receptor has an important role in the pathogenesis of postmenopausal osteoporosis by mediating apoptosis and inhibiting differentiation of osteoblast lineage cells.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>