Among these 44 proteins, statistical analyses showed overrepresentation of three role categories,
including (i) “energy metabolism” (p < 0.01; Odds Ratio = 3.02), (ii) “biosynthesis of cofactors, prosthetic groups, and carriers” (p = 0.04; Odds Ratio = 2.72), and (iii) “purines, pyrimidines, nucleosides, and nucleotides” (p = 0.04; Odds Ratio = 3.29), as well as underrepresentation of the role category “hypothetical proteins” (p = 0.01; Odds Ratio = 0.208). Overall, our data provide additional evidence that a number of genes and proteins are co-regulated by more than one σ factor. This is consistent with previous microarray studies [7] that have reported considerable overlaps between σ factor regulons in L. monocytogenes, in particular between the σH and the σB regulon. We also identified some proteins with particularly striking P505-15 datasheet patterns of co-regulation, including (i) members of the lmo2093-lmo2099 operon, specifically Lmo2094, which was found to be negatively regulated by σH, σL, and σC and Lmo2097 and Lmo2098, which were found to be negatively regulated by σH and σL (Table 4) and (ii) MptA (Lmo0096), which was found to be positively regulated by σH, σL, and σC (Table 4). MG-132 molecular weight Lmo2094 shows particularly striking negative regulation of protein production by σH, σL, and σC with respective fold changes of −7.35, -28.99,
and Elafibranor clinical trial −1.82. Although Lmo2094 is annotated as a fuculose-phosphate aldolase, it is part of an operon in which most of the other genes with assigned functions are annotated as being involved in the galactitol degradation pathway. Specifically, the
lmo2093 to lmo2099 operon encodes components of a putative PTS galactitol family permease [30], including the PTS system galactitol-specific enzyme IIC (Lmo2096), IIB (Lmo2097), and IIA (Lmo2098) components, as well as a transcription antiterminator (Lmo2099), a tagatose-6-phosphate kinase/1-phosphofructokinase (Lmo2095), an L-fuculose-phosphate aldolase (Lmo2094), and a hypothetical protein (Lmo2093). Therefore, it is possible that Chlormezanone Lmo2094 is also involved in this pathway functioning as a tagatose-1,6-biphosphate aldolase. This enzyme converts tagatose-1,6,-biphosphate into glyceraldehyde 3-phosphate and dihydroxyacetone phosphate, which allows both tagatose and galactitol to be used as energy sources for glycolysis [31]. MptA, a component of a permease of the PTS mannose–fructose–sorbose family, which is another one of the seven PTS families of L. monocytogenes[30], showed the highest fold change in the ΔBCH strain as compared to the ΔBCHL strain, supporting σL dependent protein levels (FC = 64.16); fold changes supporting σH and σC dependent protein levels were 3.39 and 3.19, respectively.