, 1995). A GC clamp was attached to the 5′-end of the forward primers (Muyzer & Smalla, 1998; Walter et al., 2001). For the 16S rRNA and the 28S rRNA genes, the PCR amplification conditions described by Randazzo
et al. (2006) and Meroth et al. (2003), respectively, were utilized. All the amplifications were performed in a 9700 Gene Amp PCR System (Applied Biosystem). The presence of amplicons was initially assessed by 1.5% w/v agarose gel (Euroclone) electrophoresis in 0.5 × TBE. The PCR products were analyzed by DGGE using the Dcode apparatus (Bio-Rad Laboratories Inc.), according to the procedure described by Cocolin et al. (2001). The amplicons obtained with the U968-f-L1401-r primers were electrophoresed for 8 h using a gel containing Ceritinib mouse a 50–70.6% urea-formamide denaturing gradient (100% denaturing solution
corresponded to 40% v/v formamide and 7 M urea), while the amplicons obtained with U1–U2 primers were electrophoresed for 4.5 h using gels containing a 40–60% urea-formamide denaturing gradient. The gels were subjected to a constant voltage of 130 V at 60 °C. After electrophoresis, the gels were stained for 20 min in 1.25 × TAE buffer (50 mM Tris-HCl, 25 mM acetic acid, 1.25 mM EDTA, pH 8.0) containing ethidium bromide solution (10 mg mL−1), rinsed in distillate water and photographed under UV illumination. The DGGE bands to be sequenced were excised from the gels with sterile scalpels. The DNA was eluted
with 50 μL TE buffer and incubated overnight at 4 °C. selleck inhibitor DNA (6 μL) eluted from each DGGE band was used for amplification using the forward primer CYTH4 without the CG clamp, further purified using the GFX-PCR-DNA and Gel Band purification kit (GE Healthcare, Buckinghamshire, UK) and sent to M-Medical/MWG Biotech (Milan, Italy) for sequencing. The sequences obtained in fasta format were compared with those deposited in the GenBank DNA database (http://www.ncbi.nlm.nih.gov/) using the basic blast search tools (Altschul et al., 1997). The lowest percentage of similarity accepted for identification was fixed at 96%. The ability of all the anaerobic strains isolated from biliary stents to form biofilm in vitro was preliminarily tested by the slime-production assay as described previously (Donelli et al., 2004). Briefly, bacteria were grown anaerobically in prereduced triptic soy broth (TSB) supplemented with 1% glucose overnight at 37 °C. Polystyrene 96-well tissue-culture plates (Corning Costar) were filled with 180 μL of fresh TSB, and 20 μL of the overnight culture was added to each well. The plates were incubated anaerobically for either 8 or 18 h at 37 °C. After incubation, the culture medium was discarded and wells were washed carefully three times with 200 μL of PBS without disturbing the biofilm on the bottom of the wells. The plates were dried for 1 h at 60 °C and stained with 2% Hucker’s crystal violet for 2 min.