Thus, the question of whether hypoxia modulates eye movement beha

Thus, the question of whether hypoxia modulates eye movement behavior remains open. Here we examined the effects of short-term hypobaric hypoxia on the velocity of saccadic eye movements and intersaccadic drift of Spanish Air Force pilots

PI3K cancer and flight engineers, compared with a control group that did not experience hypoxia. Saccadic velocity decreased with time-on-duty in both groups, in correlation with subjective fatigue. Intersaccadic drift velocity increased in the hypoxia group only, suggesting that acute hypoxia diminishes eye stability, independently of fatigue. Our results suggest that intersaccadic drift velocity could serve as a biomarker of acute hypoxia. These findings may also contribute to our understanding of the relationship between hypoxia episodes and central nervous system impairments. “
“The mirror-neuron system

(MNS) connects sensory information that describes an action with a motor plan for performing that action. selleck chemical Recently, studies using the repetition-suppression paradigm have shown that strong activation occurs in the left premotor and superior temporal areas in response to action-related, but not non-action-related, stimuli. However, few studies have investigated the mirror system by using event-related potentials (ERPs) and employing more than one sensory modality in the same sample. In the present study, we compared ERPs that occurred in response to visual and auditory action/non-action-related stimuli to search for evidence of overlapping activations for the two modalities. The results confirmed previous studies that investigated auditory MNS and extended these studies

by showing that similar activity existed for the visual modality. Furthermore, we confirmed that the responses to action- and non-action-related stimuli were distinct by demonstrating that, in the case of action-related stimuli, activity was restricted mainly to the left hemisphere, whereas for non-action-related stimuli, activity tended to be more bilateral. The time course of ERP brain check sources showed a clear sequence of events that subtended the processing of action-related stimuli. This activity seemed to occur in the left temporal lobe and, in agreement with findings from previous studies of the mirror-neuron network, the information involved appeared to be conveyed subsequently to the premotor area. The left temporo-parietal activity observed following a delay might reflect processing associated with stimulus-related motor preparation. “
“MC 228-77, California Institute of Technology, Pasadena, CA, USA There is accumulating evidence implicating a set of key brain regions in encoding rewarding and punishing outcomes, including the orbitofrontal cortex, medial prefrontal cortex, ventral striatum, anterior insula, and anterior cingulate.

Leave a Reply

Your email address will not be published. Required fields are marked *


You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>