(Bottom) Features that are pertinent to seizure detection are ext

(Bottom) Features that are pertinent to seizure detection are extracted …2.1. Transmission of Entire Raw EEGAt every sampling period, the EEG signals are sampled and transmitted to the data server without any preprocessing. Depending on the data size of one time sample of the EEG signals and the maximum payload size of a data packet, the transmission of the EEG signals may be broken up into multiple data packets.2.2. Transmission of Compressed EEGOne possible alternative to transmitting the entire EEG signals is to compress the raw EEG data before their transmission. Data compression reduces the number of bits by exploring the redundancy in the signals. A rich body of EEG compression algorithms has been proposed in the literature [11]. They vary in the lossiness, spatial or temporal redundancy being explored and the transformation used.

While many of these algorithms are able to achieve high compression ratios (CRs), a crucial factor in our study is their computational complexity. The power consumed by the microcontroller to perform one of these algorithms can potentially outstrip the power saved by reducing the amount of data transmission.Recently, the application of compressive sensing (CS) on EEG compression has shown great promise in wireless sensor networks (WSNs). The idea of CS is to exploit the redundancy (i.e., compressibility or sparsity) of an input signal using random sampling techniques, such that the signal can be reconstructed from fewer samples than required by the Nyquist rate.

The so-called
Magnetic bearings have some advantages such as no mechanical friction, no wear, no lubrication, long life, and high reliability, therefore, they can be applied in flywheels [1], air compressors, molecular pumps, turbines, generators, and bearingless motors [2�C5]. To decrease the power losses of magnetic bearings, the permanent magnet biased magnetic bearing, which is also called hybrid magnetic bearing, is adopted widely [6�C9]. In magnetic bearing systems, displacement sensors, Brefeldin_A which can detect the rotor’s displacement in five degrees of freedom (DOF) along the corresponding direction, are necessary. The most frequently used displacement sensors are the eddy current sensors since they have high resolution and wide bandwidth in active magnetic bearing systems [10�C13].

This type of sensor is very easily influenced by the magnetic field generated in magnetic bearing coils and so should be installed outside the coils [14]. Consequently, radial displacement sensors are designed to separate from the radial magnetic bearings in general, and a large axial length will be used, so the rotor modal shape is low, and bending vibrations of the rotor will be produced, resulting in a lower maximum high speed of the magnetically suspended motor (HSMSM).In addition, eddy current sensors mainly include preamplifier circuits and probes, which are integrated in the HSMSM.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>