AA and ANA rats were unilaterally implanted with a guide cannula

AA and ANA rats were unilaterally implanted with a guide cannula to aim microdialysis probes at the level of NAC. Intraperitoneal injections of 0.0, 1.5, 2.0, and 2.5 g ethanol/kg body weight were administered. Dialysate samples were collected at 30-min intervals prior to and following the injection. Radioimmunoassay specific for beta-endorphin was used to determine AZD5363 cell line the dialysate beta-endorphin content.

The 2.5-g/kg ethanol dose induced a transient increase in extracellular

beta-endorphin at the level of NAC of AA but not of ANA rats. The 2.5-g/kg ethanol dose also attenuated locomotor activity in the AA but not in the ANA rats.

The lack of an increase in the beta-endorphin concentration in the NAC of ANA rats in response to ethanol may partially account for their lower alcohol consumption and lower alcohol-induced VEGFR inhibitor attenuation of locomotor activity compared to AA rats.”
“In adult rats, trans-resveratrol attenuates kainic acid (KA)-induced convulsions and the associated hippocampal neurotoxicity. Increased neuronal survival was correlated with reduced lipid peroxidation.

Since free radical generation after KA is age dependent and does not correlate with the onset of seizure-induced injury, the present study investigated whether daily trans-resveratrol treatment in development could protect the juvenile hippocampus from seizures and onset of damage at postnatal (P) day 21. Rat pups were treated with daily injections of trans-resveratrol under three dosage regimens (1-15 mg/kg and 20-50 mg/kg). Weight, electroencephalography

(EEG), histology, and N-methyl-D-aspartate (NMDA) receptor expression were determined. Malondialdehyde (MDA) concentration was assessed from separate animals. trans-Resveratrol did not interfere with growth or attenuate KA-induced EEG seizures. However, modest protection was afforded in the CA1, the subregion most sensitive to injury at this age. The CA3 and entorhinal amygdala cortex (AMG/EC) were not spared. Stattic concentration Changes in NR1 subunit or NR1 C2 splice variant expression were also not prevented. Baseline MDA concentrations of hippocampal subfields were low at P14, P21, and P60 and high in aged adults. Glutamate (100 mu M) to stimulate peroxidation products was significant at young ages but was much greater at older ages. After KA, elevated MDA levels were observed at 24 h but only in adult preparations. Thus, while antioxidant therapy with trans-resveratrol may be considered as an adjunctive therapy to hinder epileptic activity and neurodegeneration at adult ages, it had only modest effects at young ages when production of free radicals within limbic structures is limited in this experimental model of seizures. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>