Published by Elsevier Ltd “
“Prenatal ethanol exposure can d

Published by Elsevier Ltd.”
“Prenatal ethanol exposure can damage LY2835219 in vivo the developing nervous system, producing long-lasting impairments in both brain structure and function. In this study we analyzed how exposure to this teratogen during the period of brain development affects the intracellular redox state in the brain as well as the development of anxiety- and depressive-like phenotypes. Furthermore, we also tested whether aerobic exercise might have therapeutic potential for fetal alcohol spectrum disorders (FASD)

by increasing neuronal antioxidant capacity and/or by alleviating ethanol-induced behavioral deficits. Sprague-Dawley rats were administered ethanol across all three-trimester equivalents (i.e., throughout gestation and during the first 10 days of postnatal life). Ethanol-exposed Cilengitide chemical structure and control animals were assigned to either sedentary or running groups at p ostnatal day (PND) 48. Runners had free access to a running wheel for 12 days and at PND 60 anxiety- and depressive-like behaviors were assessed. Perinatal ethanol exposure resulted in the occurrence of depressive and anxiety-like behaviors in adult rats without affecting their locomotor activity. Voluntary wheel running reversed the depressive-like behaviors in ethanol-exposed males, but not

in ethanol-exposed females. Levels of lipid peroxidation and protein oxidation were significantly increased in the hippocampus

and cerebellum of ethanol-exposed rats, and there was a concomitant reduction in the levels of the endogenous antioxidant glutathione. Voluntary exercise was able to reverse the deficits in glutathione both in Dichloromethane dehalogenase ethanol-exposed males and females. Thus, while voluntary physical exercise increased glutathione levels in both sexes, its effects at the behavioral level were sex dependent, with only ethanol-exposed male runners showing a decrease in depressive-like behaviors. (c) 2011 Elsevier Ltd. All rights reserved.”
“Plasmodium parasites, the causal agents of malaria, dramatically modify the infected erythrocyte by exporting parasite proteins into one or multiple erythrocyte compartments, the cytoplasm and the plasma membrane or beyond. Despite advances in defining signals and specific cellular compartments implicated in protein trafficking in Plasmodium-infected erythrocytes, the contribution of lipid-mediated sorting to this cellular process has been poorly investigated. In this study, we examined the proteome of cholesterol-rich membrane microdomains or lipid rafts, purified from erythrocytes infected by the rodent parasite Plasmodium berghei. Besides structural proteins associated with invasive forms, we detected chaperones, proteins implicated in vesicular trafficking, membrane fusion events and signalling. Interestingly, the raft proteome of mixed P.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>