86, P = 0010; main effect of session, F5,70 = 141, NS; interact

86, P = 0.010; main effect of session, F5,70 = 1.41, NS; interaction of session and group, F5,70 = 0.78, NS; Fig. 5A). The difference between groups developed early in training, before notable differences in behavior could be detected (compare Figs 3A and 5A). Theta-band responses to the CS were greater in the saline-treated group than in the TMZ-treated group, starting from the third training session and extending until the end of training on trace conditioning (t14 = 2.34–4.30, P = 0.035–0.001). Overall, hippocampal

theta-band responses during subsequent delay conditioning were similar in both groups (main effect of group, F1,14 = 2.62, NS; main effect of session, F3,42 = 0.80, NS; interaction of session and group, F3,42 = 2.23, NS). However, during the first session of delay eyeblink conditioning, theta-band responses were SB525334 solubility dmso more prevalent in the saline-treated group than in the TMZ-treated group (t14 = 2.19, P = 0.046). To summarise, chemotherapy disrupted both hippocampal theta-band responses and learning during trace conditioning. During subsequent delay conditioning, the effects were still evident, but

limited to the beginning of training. Chemotherapy had no effects on hippocampal theta-band responses elicited by the CS during VLD conditioning (main effect of group, F1,9 = 0.00, NS; main effect of session, F3,27 = 1.04, NS; interaction of session and group, F3,27 = 1.34, NS; Fig. 5B). However, subtle effects of chemotherapy on hippocampal theta-band responses were evident during selleck products subsequent

trace conditioning (interaction of group and session, F3,27 = 3.28, P = 0.036) – in saline-treated rats, the CS induced a stable theta-band response across trace conditioning (repeated measures anova – main effect of session, F3,15 = 1.55, NS). In contrast, in rats subjected to chemotherapy, hippocampal theta-band responses changed across trace conditioning new (F3,12 = 4.41, P = 0.026). A quadratic trend was statistically significant (F1,4 = 32.18, P = 0.005), indicating first an increase and then a decrease across training in hippocampal responding. Note that both groups learned trace conditioning equally well at the behavioral level if they were previously trained with VLD conditioning. Chemotherapy did not alter oscillatory responses within the theta range in response to the CS when rats were exposed to only one cycle of treatment (main effect of group, F1,8 = 0.07, NS; main effect of session, F3,24 = 2.01, NS; interaction of session and group, F3,24 = 2.02, NS; Fig. 5C) or after a total of six cycles of treatment, when retention of trace memory was tested (main effect of group, F1,8 = 0.45, NS; main effect of session, F1,8 = 0.28, NS; interaction of session and group, F1,8 = 2.48, NS).

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>