[38] The iNKT cells also make up a smaller but substantial population in murine spleen, thymus, blood and bone marrow (0·5–2%). In addition, unlike adaptive MHC-restricted T cells, only a small number of iNKT
cells localize to lymph nodes. Although iNKT cells are highly conserved in mammals, a major difference between human and mouse iNKT cells is their location. Invariant NKT cells are 10–100-fold less frequent at these sites in Angiogenesis inhibitor humans, although frequency of circulating iNKT cells varies greatly between individuals.[29] However, in 2009, we reported that iNKT cells are enriched in human omentum, as well as being present at enriched levels in other human adipose sites.[2] This represents the highest frequency of iNKT cells in humans, accounting for 8–12% of adipose T cells. The enrichment of iNKT cells
in human adipose tissue BAY 73-4506 cell line has been confirmed by several groups.[7, 39] Since the discovery of iNKT cells in human omentum, it has been reported that iNKT cells are also enriched in murine adipose tissue. Here, they represent 10–25% of adipose T cells, or 2–8% of all adipose lymphocytes.[3, 7, 8, 39] Hence, both murine and human adipose tissue harbour a unique population of iNKT cells, which we will describe below. One striking finding concerning iNKT cells in recent years was that, unlike other lymphocytes, iNKT cells are almost exclusively a tissue-resident population. This discovery was found using congenic parabiotic pairs to follow in vivo circulation of lymphocytes.[40] Parabiotic pairs of congenic CD45.1 and CD45.2 mice were generated for 20–60 days, which allows for sharing of the circulation within 3 days of parabiosis, and chimerism within organs from 2 weeks onwards. It was shown that iNKT cells did not show significant chimerism between parabiotic pairs in any tissue (with the exception of lymph node, which showed some recirculation of iNKT cells). This was in stark contrast to B cells, CD4 and CD8 T cells and NK cells which recirculated through all tissues 4��8C (ref. [40] and our unpublished
observations). This innovative approach reveals that iNKT cells are uniquely tissue resident with either a very long dwell time, or little to no recirculation through tissues. This fits well with the concept that the iNKT cell phenotype is location dependent, which is especially evident in adipose tissue. Invariant NKT cells can be divided into functionally distinct subsets, based on localization, the expression of CD4 and NK1.1, transcription factors and cytokine production. Subpopulations of iNKT cells analogous to MHC-restricted CD4+ Th1, Th2 and Th17 have been found. Surface markers such as expression or absence of CD4, NK1.1 and IL-17RB (for IL-25) as well as cytokine receptors are among the most important markers that distinguish Th1-like, Th2-like and Th17-like iNKT cell functional subsets[41, 26] (Fig. 1).