Typhimurium to these compounds results in a negative regulation o

Typhimurium to these compounds results in a negative regulation of ompW. By EMSA and using transcriptional fusions, we demonstrate that the global regulator ArcA binds to the ompW promoter region. Furthermore, we show that ompW negative regulation observed in wild type cells treated with H2O2 and HOCl was not retained ISRIB cell line in an arcA or arcB mutant strain, indicating that the ArcAB two component system mediates ompW negative regulation in response to H2O2 and HOCl. These results further expand our knowledge in both the mechanisms of ROS resistance and the role of ArcAB in this process. Results and discussion The OmpW porin facilitates H2O2 and

HOCl diffusion through the OM and reconstituted proteoliposomes Hydrogen peroxide and hypochlorous acid are ROS generated by phagocytic cells and in order to enter Gram-negative bacteria they must be able to cross the OM. Even though several biological membranes are permeable to H2O2, studies in E. coli and S. cerevisiae demonstrate that this compound cannot diffuse freely [9, 10]. Additionally, the dielectric properties of H2O2 are comparable to those of water and this compound has a slighter larger dipolar moment, further limiting its diffusion through the OM lipid bilayer. For HOCl, diffusion through the OM is also reported to be limited [11]. Therefore, H2O2 and HOCl must be channeled through the lipid bilayer and one possibility is the influx

through porins. We recently demonstrated that the most abundant OM protein in S. Typhimurium, OmpD, allows H2O2 diffusion and is regulated by ArcAB [12]. Little is known https://www.selleckchem.com/products/tpca-1.html about the diffusion of HOCl, but genetic evidence has suggested that in E. coli porins might be used as entry channels for hypothiocyanate ions (OSCN−), a molecule with a similar chemical structure generated by lactoperoxidase using thiocyanate and H2O2 as an oxidant [40]. In one study, ompC and ompF knockout mutants PRKACG showed an increased resistance to

OSCN−, however, a direct role of porins in mediating HOCl diffusion was not evaluated. To assess whether OmpW allows the diffusion of H2O2 and HOCl, scopoletin and dihydrorhodamine (DHR)-123 probes, respectively, were used to measure uptake of both toxic compounds separately in a wild type, ∆ompW and a genetically complemented ∆ompW (pBAD-ompW) MLN4924 datasheet strain as described in methods. The ∆ompW strain showed an increase in extracellular fluorescence levels after exposure to H2O2 and HOCl resulting in higher extra/intracellular ratios (24 and 4-fold, respectively) as compared to the wild type strain, indicating that in the absence of OmpW the influx of both toxic compounds is decreased. Genetic complementation of ∆ompW resulted in nearly identical levels of both extra and intracellular fluorescence as those observed in the wild type strain, suggesting that OmpW is necessary for H2O2 and HOCl uptake (Figure 1A and C).

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>