BMJ 318:4–5PubMed Wolf Ch (2008) Security considerations in blind

BMJ 318:4–5PubMed Wolf Ch (2008) Security considerations in blinded https://www.selleckchem.com/products/pexidartinib-plx3397.html exposure experiments using electromagnetic waves. Bioelectromagnetics. doi:10.​1002/​bem.​20440″
“Introduction The question of whether or not radiofrequency-electromagnetic fields (RF-EMF) used for mobile communication pose a health risk is being intensely discussed between politicians, health officials, physicians, scientists, and the public. Whereas the majority of scientific publications do not indicate that these non-ionizing RF-EMFs cause biological damages at levels below the thermal threshold (Sommer et al. 2007; Tillmann et al. 2007; Vijayalaxmi

and Obe 2004), some investigations demonstrated such effects. When replicated, however, even those studies were found to be non reproducible. One well-known example is the study by Repacholi FK228 solubility dmso et al. (1997)who have reported higher incidences of lymphoma in transgenic mice which were exposed to pulsed EMF at 900 MHz (Repacholi et al. 1997). Two independent replication studies did not confirm the earlier

findings (Oberto et al. 2007; Utteridge et al. 2002). Of particular importance is the possible damage of DNA molecules by EMF exposure. Despite the fact that no biophysical mechanism has been identified for such interactions, some results of studies apparently showed DNA damages which, if such studies were found to be reproducible, would give rise to concern about immediate and long-term safety issues of mobile phone use. In 2005, it was shown by a group of researchers from the Medical University Vienna Thiazovivin clinical trial that DNA molecules of human fibroblasts and rat granulosa cells, when exposed to EMFs at 900 MHz, were significantly damaged, as shown by the comet assay (Diem et al. 2005). A replication study, using the same exposure apparatus, however, did not confirm these initial findings else (Speit et al. 2007). The same group from Vienna recently published their findings on human fibroblasts

and lymphocytes, this time exposing the cells to RF-EMFs at frequencies of the new mobile phone communication standard UMTS at around 1,950 MHz (Schwarz et al. 2008). Like in their earlier investigation, exposed fibroblasts’ DNA molecules were found to be severely damaged, even at specific absorption rates (SAR) of 0.05 W/kg, thus far below the recommended exposure limits for whole-body exposure (0.08 W/kg) and partial-body exposure (2 W/kg), respectively, of the general public (ICNIRP 1998). Areas of concern Before the problems of the publication of Schwarz et al. are addressed, it is important to briefly summarize how the cells, after treatment (exposure, sham exposure, negative or positive control), were analyzed for their DNA damages: cells (10,000–30,000 per slide) were placed on slides in agarose and treated with lysis solution. After incubation (to allow unwinding of the DNA molecules), electrophoresis was performed so that the DNA molecules or fragments thereof moved along the slide to the anode.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>